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Sparse Matrix Partitioning Motivation 

•  Sparse matrix-vector multiplication (SpMV) is 
common kernel in many numerical 
computations 
-  Iterative methods for solving linear systems 
-  PageRank computation 
- … 

•  Need to make parallel SpMV kernel as fast as 
possible 
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Parallel Sparse Matrix-Vector Multiplication 

•  Partition matrix nonzeros 
•  Partition vectors 
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Objective 

•  Ideally we minimize total run-time 
•  Settle for easier objective 

–  Work balanced 
–  Minimize total communication volume 

•  Can partition matrices in different ways 
–  1D 
–  2D  

•  Can model problem in different ways 
–  Graph 
–  Bipartite graph 
–  Hypergraph 
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Parallel Matrix-Vector Multiplication 

•  Alternative way of visualizing partitioning 
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Parallel SpMV Communication 

•        sent to remote  
 processes that have  
 nonzeros in column 

•  Partial inner-products sent 
 to process that owns  
 vector element  
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1D Partitioning 

•  Each process  
 assigned nonzeros  
 for set of columns 

1D Column 

•  Each process  
 assigned nonzeros  
 for set of rows 

1D Row 
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When 1D Partitioning is Inadequate 

n=12 
nnz=34 (18,16) 
volume = 9 

“Arrowhead” matrix 

•  For any 1D bisection of nxn arrowhead matrix: 
– nnz = 3n-2 
– Volume ≈ (3/4)n 
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When 1D Partitioning is Inadequate 

n=12 
nnz=34 (16,18) 
volume = 2 

“Arrowhead” matrix 

•  2D partitioning 
• O(k) volume partitioning possible 
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2D Partitioning 

• More flexibility in partitioning 
• No particular part for given row or column 
• More general sets of nonzeros assigned parts 
•  Several methods of 2D partitioning 

– Fine-grain hypergraph 
– Coarse-grain hypergraph 
– Mondriaan 
– Nested dissection symmetric partitioning method 
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Fine-Grain (FG) Hypergraph Model 

• Catalyurek and Aykanat 
(2001)  

• Nonzeros represented 
by vertices in 
hypergraph 
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Fine-Grain Hypergraph Model 

• Rows represented by 
hyperedges 

• Hyperedge - set of one or 
more vertices 
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Fine-Grain Hypergraph Model 

• Columns represented 
by hyperedges 
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Fine-Grain Hypergraph Model 

• 2n hyperedges 
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Fine-Grain Hypergraph Model 

• Partition vertices into 
k equal sets 

• For k=2 
– Volume = number of 

hyperedges cut 
• Minimum volume 

partitioning when 
optimally solved 

• Larger NP-hard 
problem than 1D k=2, volume = cut = 2 
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2D Coarse-Grain Partitioning 

• Catalyurek and Aykanat (2001)  
•  Two stages: 

– 1D hypergraph partitioning 
– 1D multi-constraint hypergraph partitioning 

(ensures load balance) 
•  Bound on number of messages 
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Mondriaan Partitioning 

•  Vastenhouw and Bisseling (2005) 
• Recursive bisection hypergraph partitioning 
•  Each level: 1D row or column partitioning 
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Nested Dissection Partitioning - Bisection 

•  Suppose A is structurally symmetric 
•  Let G(V,E) be graph of A 
•  Find small, balanced separator S 

–  Yields vertex partitioning V = (V0,V1,S) 
•  Partition the edges such that 

–  E0 = {edges incident to a vertex in V0} 
–  E1 = {edges incident to a vertex in V1} 
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Nested Dissection Partitioning - Bisection 

•  Vertices in S and corresponding edges 
–  Can be assigned to either part 
–  Can use flexibility to maintain balance 

•  Communication Volume = 2*|S| 
–  Regardless of S partitioning 
–  |S| in each phase 
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Nested Dissection (ND) Partitioning Method 

•  Recursive bisection to partition into >2 parts 
•  Use nested dissection! 
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Numerical Experiments 

•  Structurally symmetric matrices 
•  k = 4, 16, 64 parts using 

–  1D hypergraph partitioning 
–  Fine-grain hypergraph partitioning (2D) 

•  Good quality partitions but slow 
–  Nested dissection partitioning (2D) 

•  Hypergraph partitioning for all methods 
–  Zoltan (Sandia) with PaToH (Catalyurek, serial) 
–  Allows “fair” comparison between methods 

•  Vertex separators derived from edge separators 
–  MatchBox (Purdue: Pothen, et al.) 
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Communication Volume - Symmetric Matrices 
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Test matrices from Rob Bisseling (Utrecht) 
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Runtimes of Partitioning Methods 
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Communication Volume: 1D is Inadequate 
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•  c-73: nonlinear optimization (Schenk) 
- UF sparse matrix collection   
- n=169,422     nnz=1,279,274 
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Communication Volume: 1D is Inadequate 

w
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•  asic680ks: Xyce circuit simulation (Sandia) 
- n=682,712     nnz=2,329,176 
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Parallel Sparse Matrix Partitioning Software 

•  Developing HPC software for sparse matrix 
partitioning 
– 1D 
– 2D 

•  Idea is to implement sparse matrix partitioning 
algorithms in parallel 
– Efficient/fast 
– Simple to use 

•  Leverage existing software 
– Graph/hypergraph partitioners 
– Linear algebra packages 

•  Trilinos framework 
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Trilinos and Isorropia 

•  Trilinos 
– Framework for solving large-scale scientific problems 
– Focus on packages (independent pieces of software  
 that are combined to solve these problems) 

– Epetra: parallel linear algebra package 
•  Isorropia 

– Trilinos package for combinatorial scientific computing 
– Partitioning, coloring, ordering algorithms applied to 

Epetra matrices 
– Utilizes many algorithms in Zoltan  
– “Zoltan for sparse matrices” 
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Isorropia: Sparse Matrix Partitioning Methods 

•  Parallel partitioning methods 
•  Currently exist 

– 1D linear/block, cyclic, random (New!) 
– 1D hypergraph 
– 1D graph  
– 2D fine-grain hypergraph (New!) 

•  Planned 
– 2D linear/block, cyclic, random 
– 2D RCB partitioning (of nonzeros) 
– 2D nested dissection 
– Vector partitioning (for 2D matrix partitioning) 
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Isorropia: Partitioning Example 1 

•  Simple partitioning of rowmatrix 
– 1D row hypergraph partitioning 
– Balancing number of nonzeros 
– Load imbalance tolerance of 1.03 

using I s o r r o p i a : : Epetra : : P a r t i t i o n e r ;

ParameterList params ;
params . s e t ( "PARTITIONING_METHOD" , "HYPERGRAPH" ) ;
params . s e t ( "BALANCE�OBJECTIVE" , "NONZEROS" ) ;
params . s e t ( "IMBALANCE�TOL" , " 1 .03 " ) ;

// rowmatrix i s an Epetra_RowMatrix
Pa r t i t i o n e r p a r t i t i o n e r ( rowmatrix , params , false ) ;
p a r t i t i o n e r . p a r t i t i o n ( ) ;

using I s o r r o p i a : : Epetra : : P a r t i t i o n e r ;

ParameterList params ;
params . s e t ( "PARTITIONING_METHOD" , "HYPERGRAPH" ) ;
params . s e t ( "BALANCE�OBJECTIVE" , "NONZEROS" ) ;
params . s e t ( "IMBALANCE�TOL" , " 1 .03 " ) ;

// rowmatrix i s an Epetra_RowMatrix
Pa r t i t i o n e r p a r t i t i o n e r ( rowmatrix , params , false ) ;
p a r t i t i o n e r . p a r t i t i o n ( ) ;
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Isorropia: Partitioning Example 2 

•  2D partitioning of rowmatrix 
– 2D fine-grain hypergraph partitioning 
– Balancing number of nonzeros (implicit) 
– Load imbalance tolerance of 1.03 

using I s o r r o p i a : : Epetra : : Part i t i oner2D ;

ParameterList params ;
params . s e t ( "PARTITIONING_METHOD" , "HGRAPH2D_FINEGRAIN" ) ;
params . s e t ( "IMBALANCE�TOL" , " 1 .03 " ) ;

// rowmatrix i s an Epetra_RowMatrix
Part i t i oner2D pa r t i t i o n e r ( rowmatrix , params , false ) ;
p a r t i t i o n e r . p a r t i t i o n ( ) ;

using I s o r r o p i a : : Epetra : : Part i t i oner2D ;

ParameterList params ;
params . s e t ( "PARTITIONING_METHOD" , "HGRAPH2D_FINEGRAIN" ) ;
params . s e t ( "IMBALANCE�TOL" , " 1 .03 " ) ;

// rowmatrix i s an Epetra_RowMatrix
Part i t i oner2D pa r t i t i o n e r ( rowmatrix , params , false ) ;
p a r t i t i o n e r . p a r t i t i o n ( ) ;
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Isorropia: Redistributing Matrix Data 

•  After partitioning matrix 
– Build Redistributor from new partition 
– Redistribute data based on new partition 
– Obtain new matrix 

pa r t i t i o n e r�>pa r t i t i o n ( ) ;

// Set up Red i s t r i b u t o r based on p a r t i t i o n
I s o r r o p i a : : Epetra : : Red i s t r i bu to r rd ( p a r t i t i o n e r ) ;

// Red i s t r i b u t e data
newmatrix = rd . r e d i s t r i b u t e (⇥ rowmatrix , true ) ;
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Isorropia: Redistributing Matrix Data 

•  Shortcut  
– Combines partitioning/redistibution of data 

using I s o r r o p i a : : Epetra : : createBalancedCopy ;

ParameterList params ;
params . s e t ( "IMBALANCE�TOL" , " 1 .03 " ) ;
params . s e t ( "BALANCE�OBJECTIVE" , "NONZEROS" ) ;
params . s e t ( "PARTITIONING_METHOD" , "HYPERGRAPH" ) ;

// crsmatr ix and newmatrix are Epetra_CrsMatrix
newmatrix = createBalancedCopy (� crsmatr ix , params ) ;
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Isorropia: Preliminary results 

•  Isorropia and Epetra can be used to study matrix 
partitioning 
– Easy to experiment with different matrix partitionings 
– Can see impact of partitionings on different Epetra 

parallel linear algebra kernels 
•  Numerical experiments 

– Runtime of SpMV for different matrix partitionings 
– 3 different methods: 1D linear, 1D hypergraph,  
 2D fine-grain 

– Parallel implementations of partitioning methods 
– Test problems: bcsstk30, bcsstk32, c-73, asic680ks 
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Isorropia: Preliminary results 

•  Platforms 
– NERSC Franklin (Cray XT4, Opteron 2.3 GHz  
 quad core) 

– SNL Odin cluster (dual 2.2GHz Opteron, Myrinet) 

NERSC Franklin 
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Isorropia: SpMV Timings (Franklin) 
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SpMV Timings (Franklin, normalized) 
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Isorropia: SpMV Timings (Odin) 
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Summary 

•  Motivation for and overview of 2D partitioning 
•  New 2D matrix partitioning algorithm 
•  ND matrix partitioning algorithm 

– ND used in new context 
– Good trade off between communication volume and 

partitioning time 
• Communication volume (comparable to fine-grain) 
• Partitioning time (comparable to 1D) 

•  Presented simple framework for sparse matrix 
partitioning for Trilinos/Epetra applications 
– First production code that supports parallel 2D 

sparse matrix partitioning 
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Summary of Isorropia Work 

•  Mixed results for SpMV runtimes 
– Decrease not proportional to decrease in 

communication volume 
– Results for bcsstk30 and bcsstk32 not significantly 

better than linear 
•  2D FG worse than 1D hypergraph 

– Improvement over linear for asic680k and c-73 
•  2D FG significantly better than 1D hypergraph for some k 

•  2D partitioning can be effective for some matrices 
•  Improvements needed to make 2D methods viable   

– Room for improvement (e.g., PHG for FG) 
• 2D fine-grain partitioning in next Trilinos 

release 
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